Broadly stated, the Bochner Technique refers to a family at methods for obtaining what are often topological conclusions about a manifil using information about curvature and differential operates that live on the manifidd.

In particular, we have sevenl different teas about what a Laplacim is on a Riemannicas manifold, and since the Laplacian is arguably the single most important differential openter, it seems reasonable that we should try to study how different incarnations' of it might interact.

References:

- The Boche Technique in Differential Geometry - Hung-Msi Wu
- Riemannion Geometry - Peter Petersen
- Riemannian Geom. and Geom. Andysis - Jurgen Jäst
- Einstein Manifolds - Arthur Base

The Weitzenböck Formulas:
Since we apparantly have two competiting notions oh a Laplacian on M, we should try to figure out how thy relate
To this end, it will be useful to cook up some technical results that relate the differential operators δ and δ to ∇ and R^{∇}.
Lemma 1: Let $\left\{V_{i}\right\}$ be an ON frame for $T M$ near $x \in M$, and $\left\{\omega^{i}\right\}$ its dual co-frame. Then
(i) $\delta=\omega^{i} \wedge \nabla_{v i}$
(ii) $\delta=-\Sigma_{j} i\left(v_{j}\right) \nabla_{v_{j}}$

Note: $\dot{\theta}(-)$ is the interior multiplication operator, which acts on p-forms by sending $\omega \longmapsto \mathscr{\theta}(v) \omega$ (a $p-1$ form) defined by

$$
[\hat{e}(v) \omega]\left(x_{1}, \ldots, x_{p-1}\right):=\omega\left(v, x_{1}, \ldots, x_{p-1}\right)
$$

Prof:: This technique is generally quite useful, so let's go over it carefully:
Step 1: Show that the expression at hand is invariant with respect to the choice of coordinates, local frame, etc.

Step 2: Prove the formula using a consentient choice of coondinntes or local frame. Often the following is useful:

Lemma: Given $x \in M$ and an on base $\left\{v_{i}\right\}$ of $T_{x} M, \exists$ oN cool frame $\left\{V_{i}\right\}$ for TM which is normal at x with $V_{i}(p)=v_{i}$.

Here, normed at x weans that $\nabla_{v_{i}} V_{j}(x)=0$. Being torsion free implies for thor that $\left[v_{i}, v_{j}\right](x)=0$.

Remak: Geodesic normal coordinates centered at x satisfy all of the above, except that they reed not induce eveguhne on vector fields.

Lets apply this technique to exhibiting the p opposed formulas for δ and δ :
$F_{\text {inst, let }} d_{0}:=\omega^{i} \wedge \nabla v_{i}$ and $\delta_{0}=-\sum_{j} i\left(v_{j}\right) \nabla v_{j}$. We aim to show that $d=d_{0}$ and $\delta=\delta_{0}$, and we begin by observing that if $\left\{W_{i}\right\}$ is any other local ONfrome about x with $\left\{\eta^{i}\right\}$ its dual confrome, then

$$
\begin{aligned}
& \omega^{i} \wedge \nabla_{v}=d_{0} \\
&=\eta^{i} \wedge \nabla_{w i} \\
&-\sum_{j} \dot{l}\left(v_{j}\right) \nabla_{v_{j}}=\delta_{0}
\end{aligned}=-\sum_{j} \dot{l}\left(w_{j}\right) \nabla_{w_{j}}
$$

This is early to check by writing $W_{i}=a_{i}{ }^{j} V_{j}$ and $\eta^{i}=b_{j}^{i}$ wi for smooth functions $a_{i}{ }^{j}, b_{j}^{i}$ defined on the common domain of $\left\{v_{i}\right\},\left\{w_{i}\right\}$. N the the important facts that $a_{i}^{j} b_{j}^{k}=\delta_{i}^{k}$ and that $\left(a_{i} j\right)$ is orthogoml.

We now show the validity of the claimed formulas at $x \in M$. Since p was corbitry, the claim will then follow. Let $\left(x^{i}\right)$ be normal coordinates at x, and set $v_{i}=\partial_{x i}, \omega^{i}=d x^{i}$. Since $d_{1} d_{0}, \delta, \delta_{0}$ are linear, it suffices to prove the formulas where the agent has the form fw'A...n wP (re ordering the basis if necessary). For d_{0}, we compute that

$$
\begin{aligned}
d_{0}\left(f \omega^{\prime} \wedge \cdots \wedge \omega^{p}\right) & =\left(\omega^{i} \wedge \nabla_{v_{i}}\right)\left(f \omega^{\prime} \wedge \cdots \wedge \omega^{p}\right) \\
& =\omega^{i} \wedge\left\{\nabla_{v_{i}}(f) \omega^{\prime} \wedge \cdots \wedge \omega^{p}+f \nabla_{v_{i}}\left(\omega^{\prime} \wedge \cdots \wedge \omega^{p}\right)\right\} \\
& =\omega^{i} \wedge\left\{v_{i}(f) \omega^{\prime} \wedge \cdots \wedge \omega p+f \sum_{j} \omega^{\prime} \wedge \cdots \wedge \nabla_{v_{i}} \omega^{j} \wedge \cdots \wedge \omega p\right\}
\end{aligned}
$$

and so at x where $\left(\nabla v_{i} v_{j}\right)(x)=\left(\nabla_{v_{i}} \omega j\right)(x)=0$, we get

$$
\left.\partial_{0}\left(f \omega^{\prime} \wedge \cdots \wedge \omega^{p}\right)\right|_{x}=\left.\left(V_{i} f\right) \omega i \wedge \omega^{\prime} \wedge \cdots \wedge \omega p\right|_{x}=\left.j\left(f \omega^{\prime} \wedge \cdots \wedge \omega p\right)\right|_{x} .
$$

For So, we compute that

56

$$
\begin{aligned}
\left.\delta_{0}\left(f \omega^{\prime} \wedge \cdots \wedge \omega^{p}\right)\right|_{x} & =-\left.\sum_{j} i\left(v_{j}\right) \nabla_{v_{j}}\left(f \omega^{\prime} \wedge \cdots \wedge \omega^{p}\right)\right|_{x} \\
& =-\left.\sum_{j} \dot{e}\left(v_{j}\right)\left\{V_{j}(f) \omega^{\prime} \wedge \cdots \wedge \omega p+f \sum_{i} \omega^{\prime} \wedge \cdots \wedge \nabla_{v_{j} \omega^{i} \wedge \cdots \omega p}\right\}\right|_{x} \\
& =-\left.\sum_{j} i\left(v_{j}\right) V_{j}(f) \omega^{\prime} \wedge \cdots \wedge \omega p\right|_{x} \\
& =-\left.\sum_{j} V_{j}(f)(-1)^{k-1} \delta_{j}^{k} \omega^{\prime} \wedge \cdots \wedge \omega^{n} \wedge \cdots \wedge \omega^{p}\right|_{x} \\
& =-\left.\sum_{j}(-1)^{j-1} V_{j}(f) \omega^{\prime} \wedge \cdots \wedge \hat{\omega}^{j} \wedge \cdots \wedge \omega p\right|_{x}
\end{aligned}
$$

Meawhile, $\delta=(-1)^{n(p+1)+1} * \partial *$, so also at x we have

$$
\begin{aligned}
\delta\left(f \omega^{\prime} \wedge \cdots \wedge \omega p\right) & (-1)^{n(p+1)+1} * d\left(f \omega^{p+1} \wedge \cdots \wedge \omega^{n}\right)=(-1)^{n(p+1)+1} *\left(\omega^{i} \wedge \nabla_{V_{i}}\left(f \omega^{p+1} \wedge \cdots \wedge \omega^{n}\right)\right) \\
& =(-1)^{n(p+1)+1} V_{i}(f) * \omega^{i} \wedge \omega^{p+1} \wedge \cdots \wedge \omega^{n} \\
& =\sum_{i}(-1)^{n(p+1)+1} \operatorname{sgn}((i)(p+1) \cdots(n)(1) \cdots(\bar{i}) \cdots(p)) V_{i}(f) \omega^{\prime} \wedge-\hat{\omega}^{i} \wedge \cdots \omega^{p} \\
& =\sum_{i}(-1)^{n(p+1)+1+(n-p+1)(p-1)+p-i} V_{i}(f) \omega^{\prime} \wedge \cdots \wedge \hat{\omega}^{i} \wedge \cdots \wedge \omega p \\
& =\sum_{i}(-1)^{i} V_{i}(f) \omega^{1} \wedge \cdots \wedge \hat{\omega i} \wedge \cdots \wedge \omega p .
\end{aligned}
$$

Weitzenböck Formula I:
Let M^{n} be on oriented Rem. mfd, $\left\{V_{i}\right\}$ a local on frame, and $\left\{w_{i}\right\}$ its dual co-frawe. Then

$$
\Delta=-\Delta^{\nabla}-\sum_{j} \omega^{i} \wedge \dot{l}\left(v_{j}\right) R\left(v_{i}, v_{j}\right)
$$

where $\Delta=(\partial+\delta)^{2}=d \delta+\delta d$ is the Metage Loplacion on $\Omega^{\bullet}(M)$ and $-\Delta^{\nabla}=-\operatorname{tr}\left(\nabla^{2}\right)=\nabla^{*} \nabla$ is the connection Laplacian.

Thus, these two Laplace operates differ by some function of corvative.
Corallay to WF I: $\Delta=-\Delta^{\nabla}$ on $C^{\infty}(M)$ and on $\Omega^{n}(M)$.
Proof: That $R\left(v_{i}, v_{j}\right)$ annihilates $C^{\infty}(M)$ is clear since R is a tensor and so $R\left(v_{i}, v_{j}\right) f=f R\left(v_{i}, v_{j}\right) \mathcal{I}=0$.
Let $\omega \in \Omega^{n}(M)$. Then $R\left(v_{i}, v_{j}\right) \omega=: \eta_{i j}=\varphi_{i j} \omega^{\prime} \wedge \cdots n \omega^{n}$ is also in $\Omega^{n}(M)$, and so

$$
\begin{aligned}
\sum_{j} \omega^{i} \wedge \dot{e}\left(v_{j}\right) n_{i j} & =\sum_{j} \omega^{i} \wedge \dot{e}\left(v_{j}\right) \varphi_{i j} \omega^{\prime} \wedge \cdots \wedge \omega^{n} \\
& =\sum_{j} \omega^{i} \wedge\left(\varphi_{i j} \sum_{k=1}^{n}(-1)^{n-1} \omega^{n}\left(v_{j}\right) \omega^{\prime} \wedge \cdots \wedge \hat{\omega}^{n} \wedge \cdots \wedge \omega^{n}\right) \\
& =\sum_{j} \omega^{i} \wedge\left((-1)^{j-1} \cdot \varphi_{i j} \omega^{\prime} \wedge \ldots \wedge \hat{\omega}^{j} \wedge \cdots \wedge \omega^{n}\right) \\
& =\varphi_{i i} \omega^{\prime} \wedge \cdots \wedge \omega^{n} \\
& =R\left(v_{i}, v_{i}\right) \eta \equiv 0 .
\end{aligned}
$$

Thus in either case, the curvature "error" term in WF I vanishes.

Prod of WF I: As a first step, check that both sites we intipentent of the choice af local on frame $\left\{V_{i}\right\}$.

Next, me verify that the formula hills at an arbitron $p \in M$, about which we fix a lox. ON norm frame.
At P, by normality,

$$
\begin{aligned}
& \text { - } \operatorname{tr} \nabla^{2}=\sum \nabla_{v_{i}} \nabla_{v_{i}}-\nabla_{\nabla_{v_{i}} v_{i}}=\sum \nabla_{v_{i}} \nabla_{v_{i}} \\
& \cdot R\left(v_{i}, v_{j}\right)=\left[\nabla_{i}, \nabla_{j}\right]-\nabla_{\left[v_{i}, v_{j}\right]}=\left[\nabla_{i}, \nabla_{j}\right]
\end{aligned}
$$

Now we compote at p that (since $\nabla_{v_{i}} \omega j(p)=0$)

$$
\begin{aligned}
\delta d & =-\sum_{j} i\left(v_{j}\right) \nabla v_{j}\left(\omega^{i} \wedge \nabla_{v_{i}}\right) \\
& =-\sum_{j} i\left(v_{j}\right)\left\{\nabla_{v_{j}} \omega^{i} \wedge \nabla_{v_{i}}+\omega^{i} \wedge \nabla_{v_{j}} \nabla_{v_{i}}\right\} \\
& =-\sum_{j} i\left(v_{j}\right) \omega^{i} \wedge \nabla_{v_{j}} \nabla_{v_{i}} \\
& =-\sum_{i}\left\{\nabla_{v_{i}} \nabla_{v_{i}}-\sum_{j} \omega^{i} \wedge i\left(v_{j}\right) \nabla v_{j} \nabla v_{v_{i}}\right\} \\
& =-\operatorname{tr} \nabla^{2}+\sum_{j} \omega^{i} \wedge i\left(v_{j}\right) \nabla_{v_{j}} \nabla v_{i}
\end{aligned}
$$

On the other hand, using that $i\left(v_{j}\right) \nabla_{v_{k}}=\nabla_{v_{k}} i\left(v_{j}\right)$ at P,

$$
\begin{aligned}
d \delta & =-\omega^{i} \wedge \nabla v_{i}\left(\sum_{j} i\left(v_{j}\right) \nabla v_{j}\right) \\
& =-\Sigma_{j} \omega^{i} \wedge i\left(v_{j}\right) \nabla v_{i} \nabla v_{j}
\end{aligned}
$$

Thus,

$$
\Delta=\partial \delta+\delta d=-\operatorname{tr} \nabla^{2}-\sum_{j} \omega^{i} \wedge i\left(v_{j}\right) R\left(v_{i}, v_{j}\right)
$$

Using this formula, we con establish a few more very useful results. Recall that $\langle-,-\rangle$ on M indues a unique fibre metric on $\Omega^{P}(M)$ satistring the formula

$$
\left\langle\omega^{\prime} \wedge \cdots \wedge \omega^{p}, \eta^{\prime} \wedge \cdots \wedge \eta^{p}\right\rangle=\operatorname{det}\left(\left\langle\omega^{i}, \eta^{j}\right\rangle\right)
$$

where $\left\langle\omega^{i}, \eta^{j}\right\rangle$ is the canonical fibre metric on $T^{(1,0)} T M$. This, in a local ON frame $\left\{V_{i}\right\}$ with dual co-frome $\left\{\omega_{i}\right\}$, we see that

$$
\left\{\omega^{i_{1}} \wedge \cdots \wedge \omega^{i_{p}}: 1 \leq i_{1}<\cdots<i_{p} \leq n\right\}
$$

is a local $0 N$ base of $\Omega^{p}(M)$.

Weitzenböck Formula II: Let M^{n} be as above (opt, orienkd), and let $\phi \in \Omega^{P}(M)$. Then

$$
-\frac{1}{2} \Delta|\phi|^{2}=|\nabla \phi|^{2}-\langle\Delta \phi, \phi\rangle-F(\phi)
$$

Where

$$
F(\phi):=\left\langle\sum_{j} \omega^{i} \wedge i\left(v_{j}\right) R\left(v_{i}, v_{j}\right) \phi, \phi\right\rangle
$$

Corolley: If $\phi \in \Omega P(M)$ is harmonic, then

$$
-\frac{1}{2} \Delta|\phi|^{2}=|\nabla \phi|^{2}-F(\phi)
$$

Proof of WFII: We again begin by noting that the formula is invmint with respect to choice of on local frame, so we pick an arbitrary point $p \in M$ ad fix a local on frame which is nome at p.
Beginning with WF I:

$$
\begin{aligned}
& \Delta \phi=-\Delta^{\nabla} \phi-\sum_{j} \omega^{i} \Lambda i\left(v_{j}\right) R\left(v_{i}, v_{j}\right) \phi \\
& \left\langle\operatorname{tr} \nabla^{2} \phi, \phi\right\rangle=-\langle\Delta \phi, \phi\rangle-F(\phi)
\end{aligned}
$$

Now compute the at p

$$
\begin{aligned}
\left\langle\operatorname{tr} \nabla^{2} \phi, \phi\right\rangle & =\left\langle\sum_{i} \nabla_{v_{i}} \nabla_{v_{i}} \phi, \phi\right\rangle \\
& =\sum_{i}\left\{\nabla_{v_{i}}\left\langle\nabla_{v_{i}} \phi, \phi\right\rangle-\left|\nabla_{v_{i}} \phi\right|^{2}\right\} \\
& =\sum_{i}\left\{\frac{1}{2} \nabla_{v_{i}} \nabla_{v_{i}}|\phi|^{2}-\left|\nabla_{v_{i}} \phi\right|^{2}\right\} \\
& =\frac{1}{2} \Delta \Delta^{\nabla}|\phi|^{2}-|\nabla \phi|^{2} \\
& =-\frac{1}{2} \Delta|\phi|^{2}-|\nabla \phi|^{2}
\end{aligned}
$$

Lemma: Let $\phi \in \Omega^{\prime}(M)$. Then $F(\phi)=-\operatorname{Ric}\left(\phi^{\boldsymbol{F}}, \phi^{\boldsymbol{F}}\right)$
Proof: Fix a local on frame $\left\{V_{i}\right\}$ wt co-frame $\left\{w_{i}\right\}$. Then if $\phi=\phi_{i} \omega^{i}, \phi^{\#}=\Sigma_{i} \phi_{i} V_{i}$, so in particular

$$
\phi^{\#}=\Sigma_{i}\left\langle\phi, \omega^{i}\right\rangle V_{i}
$$

and thus

$$
\begin{aligned}
F(\phi) & =\left\langle\sum_{j} \omega^{i} \wedge i\left(v_{j}\right) R\left(v_{i}, v_{j}\right) \phi, \phi\right\rangle \\
& =\sum_{j} i\left(v_{j}\right) R\left(v_{i}, v_{j}\right) \phi\left\langle\omega^{i}, \phi\right\rangle \\
& =-\sum_{j} \phi\left(R\left(v_{i}, v_{j}\right) v_{j}\right)\left\langle\omega_{i}, \phi\right\rangle \\
& =-\sum_{j}\left\langle\phi^{\#}, R\left(v_{i}, v_{j}\right) v_{j}\right\rangle\left\langle\omega^{i}, \phi\right\rangle \\
& =-\sum_{j} R m\left(\phi^{\#}, v_{j}, v_{j}, \phi^{\#}\right) \\
& =-\operatorname{Ric}\left(\phi^{\#}, \phi^{*}\right)
\end{aligned}
$$

Our Weitzenböck Formula fun 1-furms thus reads

$$
-\frac{1}{2} \Delta|\phi|^{2}=-\langle\Delta \phi, \phi\rangle+|\nabla \phi|^{2}+\operatorname{Ric}\left(\phi^{\#}, \phi^{\#}\right) .
$$

We finish up this section by exhibiting two more formulas that are generally very useful.

Corollary: (Weitzenbiock Formula for Vector Fields)
Let $x \in \forall(M)$. Then if $X^{b} \in \Omega^{\prime}(M)$ is closed,

$$
-\frac{1}{2} \Delta|x|^{2}=\langle\nabla(\operatorname{div} x), x\rangle+|\nabla x|^{2}+\operatorname{Ric}(x, x) .
$$

Proof: $X^{b} \in \Omega^{\prime}(M)$, and b is an isometry, so by the above

$$
-\frac{1}{2} \Delta|x|^{2}=-\frac{1}{2} \Delta\left|x^{b}\right|^{2}=-\left\langle\Delta x^{b}, x^{b}\right\rangle+\left|\nabla x^{b}\right|^{2}+\operatorname{Ric}(x, x) .
$$

Note that b commules with ∇, so that $\left|\nabla x^{b}\right|=|\nabla x|$.
Moreover,

$$
\Delta x^{b}=\partial \delta x^{b}+\delta \partial x^{b}=d \delta x^{b}=-\partial(\operatorname{div} X)
$$

where we use that $\operatorname{div} x=-\delta\left(x^{b}\right)$. Thus,

$$
\begin{gathered}
-\left\langle\Delta X^{b}, x^{b}\right\rangle=\left\langle\partial(\operatorname{div} x), x^{b}\right\rangle=\left\langle\partial(\operatorname{div} x)^{\#}, x\right\rangle \\
=\langle\operatorname{grad}(\operatorname{div} x), x\rangle .
\end{gathered}
$$

Corolla (Buchner's Formula)
Let $f \in C^{\infty}(M)$. Then

$$
-\frac{1}{2} \Delta|\nabla f|^{2}=-\langle\nabla \Delta f, \nabla f\rangle+\left|\nabla^{2} f\right|^{2}+\operatorname{Ric}(\nabla f, \nabla f) \text {. }
$$

Proof: Just notice that ∇f has $\partial\left((\nabla f)^{b}\right)=\partial(\partial f)=0, a j$ apply the previous formula.

Applications of the Weitzenböck Formulas
First, we introduce a few important concepts.

- Killing Fields
- The Maximum Principle
- The Hodge Theorem

And then we prove some results concerning:

- How curvature affects topology;
- The site of isometry groups of Riemannion manifolls;
- Eigenvalue estimates for the Laplacian
- Gardings Inequality

Killing Fields:
Def: A vector field $X \in \mathscr{X}(M)$ is a Killing Field A its lace flows act by isometries.
Pop: let x be a killing Field. TFAE:

- $\mathscr{L}_{x} g \equiv 0$

$$
\left\langle\nabla_{v} x, w\right\rangle+\left\langle\nabla_{w} x, v\right\rangle=0
$$

- $\left(v \mapsto \nabla_{v} x\right)$ is a skew symmetric $(1,1)$ tensor

Prop:A Killing field X is uniquely determined by its values $X l_{p}$ and $\nabla X l_{p}$ at any $p \in M$.

Putting these together, we get:
Theorem: If x is a Killing field, then $\{x=0\}$ is a disjoint union of totally geodesic submanifolls, each of cen co-dinension.

One last result before we move on:
Theorem: The set of trellis fields $i s 0(M, g)$ is a Lie algebra of dim $\leq \frac{n(n+1)}{2}$, and of $T_{s o}(M, g)$.

Proposition: (Weitzeabiok Formula for Killing Fields)
Let $x \in \notin(M)$ be a killing field. Ten

$$
-\frac{1}{2} \Delta|x|^{2}=|\nabla x|^{2}-\operatorname{Ric}(x, x) .
$$

Prof: This can be easily established using the typical technique with local on normal frames.

It con also be established invariant, as in Petersen: Let $f=\frac{1}{2}|x|^{2}$.
(i) $\operatorname{grad} f=-\nabla_{x} X$

For eves V,

$$
\text { (ii) } \begin{aligned}
\left\langle\nabla^{2} f(v, v f, v\rangle=\right. & \nabla_{v} f=\left\langle\nabla_{v} x, x\right\rangle=-\left\langle\nabla_{x} x, v\right\rangle \\
\nabla^{2} f(v, v)= & \left\langle\nabla_{v} g^{2} \cdot R_{m}(v, x, v\rangle=-v\right) \\
= & -\left\{\langle R(v, x) x, v\rangle+\left\langle\nabla_{x} \nabla_{v} x, v\right\rangle+\left\langle\nabla_{[v, x]} x, v\right\rangle\right\} \\
= & -R_{m}(v, x, x, v)-\left\langle\nabla_{x} \nabla_{v} x, v\right\rangle \\
& -\left\langle\nabla_{\nabla_{v} x} x, v\right\rangle+\left\langle\nabla_{\nabla_{x} v} x, v\right\rangle \\
= & \left|\nabla_{v} x\right|^{2}-R_{m}(v, x, x, v) \\
& -\left\langle\nabla_{x} \nabla_{v} x, v\right\rangle-\left\langle\nabla_{v} x, \nabla_{x} v\right\rangle \\
= & \left|\nabla_{v} x\right|^{2}-R_{m}(v, x, x, v) \\
& -x\left\langle\nabla_{v} x, v\right\rangle \\
= & \left|\nabla_{v} x\right|^{2}-R_{m}(v, x, x, v)
\end{aligned}
$$

One mare prelimincy concept:
Theorem: (Elliptic (Straus) Maximum Principle)

Let $P=-a^{i j} \partial_{i} \partial_{j}-b^{i} \partial_{i}$ be a second order elliptic opeater on an open $U \subseteq \mathbb{R}^{n}$, with smooth coefficients.

Suppose $f \in C^{\infty}(M)$ is a sobsolution, ie., $P f \leq 0$, on \mathbb{U}, the if f attains its maximum on int r, then f is constant. Likewise if $A P \geqslant 0$, ard f... minimum...

Def_: A quantity on M is said to be quasi-positive (resp, negative) if it is every where non-regative (resp. non-positive) and is strictly positive (resp. regative) at some point.
Theorem (Bochner): Let M^{n} be a closed Riem. mfd with non-positive (1946) Riccicurvature. Then every killing field is parallel.

If Rec is quasi-negative, then every killing fie is zero.
Prof: Since Bic ≤ 0, the Killing Field Weitzenböck Formula tells us the

$$
0 \leq-\frac{1}{2} \Delta|x|^{2}=\frac{1}{2} \operatorname{div}\left(\operatorname{grad}|x|^{2}\right)
$$

So that $|x|^{2}$ is subharmonic on M with respect to the operator

$$
j_{i v}(g / u d f)=\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} g^{i j} \partial_{j} f\right) .
$$

Since M is closed, $|x|^{2}$ wist the fine be constant, so

$$
|\nabla x|^{2} \equiv \operatorname{Ric}(x, x) \equiv 0
$$

Thus X is parallel, and if Rice is negative definite at sone point, we also get that $\left.\nabla X\right|_{p}=\left.X\right|_{p}=0$, hence $X \equiv 0$.

Alternative Proof: Use Stoke's Theorem (if we hove orientability)

$$
\left\{\begin{array}{r}
\int_{M}|\nabla x|^{2}-\operatorname{Ric}(x, x)=\int_{M} \frac{1}{2} \Delta|x|^{2}=0 \\
|\nabla x|^{2}-\operatorname{Ric}(x, x) \geqslant 0
\end{array}\right.
$$

Corollary: with M^{n} as above, $\quad \operatorname{dim}(i s \sigma(M, g))=\operatorname{dim}(I s o(M, g)) \leq n$. If Rec is quasi vegative, the $I_{s o}\left(M_{i g}\right)$ is finite.
Proof: Recall that $I_{s o}(M, g)$ is a compar Lie group when M is coup act, and that is ه (Mag) is spanned by killing fields.
By Buchner's Theorem, every killing field is parallel, so the linear evaluation map iso $(M, g) \rightarrow$ TpM which sends $\left.X \mapsto X\right|_{p}$ is infective. Thus, the first statant follows,
For the second part, we see the every killing field is 0 , and so e every connected component of $I_{\text {so }}(M, g)$ is trivial. By, compactress, we conduce that $I_{s o}(M, S)$ is finite it Tic is quasi positive.

Coralleny: With $\left(M_{i}^{n} g\right)$ as above, and $p:=\operatorname{dim}$ iso (M, g), we h ave the isometric splitting $\dot{\widetilde{M}}=N \times \mathbb{R}^{P}$.
Proof:- We hove in hand p lineally independent oud parallel vector fills on M, which we can lift to parables vector fields on \tilde{M}.

Fix any $x \in \widetilde{M}$. The parallel fields above give a reduction it TM for the action of $\operatorname{Hol}(M, g)$:

$$
T \tilde{M}=T^{(0)} \tilde{M} \oplus T^{(1)} \widehat{M} \oplus \cdots \oplus T^{(k)} \tilde{M}
$$

where $T^{(0)} \tilde{M}$ is the subbundhe spanned by th parallel fields, which is thus acted upon trivially \& Hold $\left(M_{1} g\right)$. Note $\operatorname{din}^{(0)} M=p$
Since \tilde{M} is complete and simply connected, the de ham Decomposition tells us that

$$
\tilde{M}=\text { ism }^{\mathbb{R}^{p} \times N}
$$

Alternctionly: Petersen has a poof using distance functions:
We con make the parallel vecterfielJs on \tilde{M} ON, and then each one arises as the gradient field of a (different) distance function with vanishing Hessians.
This allows us to "split off" Euclitan pieces of the metric

$$
\leadsto \quad g=d r^{2}+g r=d r^{2}+g 0
$$

We Jo this for each of the p vector fields, and get the desired spitting.

Jo me veal this?
Theorem: (Bocluner, 1948) Let M n be a closet, orient Riem. mfd with non-negative Ricci curvature. Then every hamonic 1-form is parallel.

If Roc is quasi-positive, then every harmonic 1-form is zero.
Proof: Let $\phi \in \Omega^{\prime}(M)$ Le harmonic. Then WF II for Harmonic 1-Furns yields

$$
-\frac{1}{2} \Delta|\phi|^{2}=|\nabla \phi|^{2}+\operatorname{Ric}\left(\phi^{\#}, \phi^{\#}\right)-\langle\Delta \phi, \phi\rangle<0
$$

So we see that $|\phi|^{2}$ is subharmonic, hence constant, and we concise exactly as before. We could have also used Stoke's Theorem instand of the max. prince.

Cordlany Let M^{n} be a closed oriented Riem. mfd with Bic $\geqslant 0$.
Then $b_{1}(M) \leq n$, with equality holding of (M, g) is a flat torus.
Proof: If $\mathcal{H}^{\prime}(M)$ denies the space of harmonic 1-forms on M, then the Hodge Theorems implies that $b_{1}(M)=\operatorname{dim} \mathcal{L}^{\prime}(M)$.
By Buchner's Theorem, every harmonic 7-form on M is p walled.
Aside: $\left\{\begin{array}{l}\text { Conversely, enc parallel } p \text {-form is closed and co-closed as a result of } \\ \text { the expressions } d=\omega i \wedge \nabla_{v_{i}} \quad \delta=-\sum i\left(v_{j}\right) \nabla v_{j}, \\ \text { hence ever parallel } p \text {-form is harmonic. }\end{array}\right\}$
Thus, the liver evaluation mop from $\mathcal{L}^{\prime}(M) \rightarrow T_{p}^{*} M$ which sends $\omega \longmapsto \omega_{\rho}$ is infective, hence $b_{1}(M) \leqslant n$.

Now suppose that equality is achieved, so that there me n intensest parallel 1 -forms on M. By raising indices me obtain a parallel global from $\left\{E_{i}\right\}$ for $T M$. Thus, (M, g) is flat.

Now consiter the univerl cover (\tilde{M}, \bar{Y}) of (M, g), which by flatness is $\left(\mathbb{R}^{n}, g_{0}\right)$. $\pi_{1}(M)=: \Gamma$ acts on $\widetilde{M}=\mathbb{R}^{n}$ by isometries.

Lift the frame $\left\{E_{i}\right\}$ to $\left\{\tilde{E}_{i}\right\}$ on \mathbb{R}^{n}, which is again parallel and this constant. By charity coordinates, we cm view $\bar{E}_{i}=\partial_{i}$, the stanjorl coordinate vector fields.

These vector fields are invariant under $\Gamma: \quad D \gamma_{p}\left(\left.\partial_{i}\right|_{p}\right)=\left.\partial_{i}\right|_{\gamma(p)}$. Mowers, this implies that every $\gamma \in \Gamma$ mot be a translation, so Γ is fg , abelion, and torsion free. Thus, $\Gamma=\mathbb{Z} q f$ sure q.

If $q<n$, then \mathbb{Z}^{q} generates a q-dim. subspace $V \not \mathbb{R}^{n}$, and If W is its orthogonal complement then

$$
M=\mathbb{R}^{n} / \mathbb{Z}^{q}=V \oplus w / \mathbb{Z}^{q}=V / \mathbb{Z}^{q} \oplus w
$$

contradicting corpactress. Thus, $q=n$, so the M is a flat torus.

Remark: If Pic is quasi positive, then $b_{c}(M)=0$.
What about the higher Betti numbers?
Def: The curvature operator $R: \Gamma\left(\Lambda^{2} T M\right) \longrightarrow \Gamma\left(\Lambda^{2} T M\right)$ is defined via the la al formula

$$
R\left(V_{i} \wedge V_{j}\right)=R_{i j k e} V_{k} \wedge V_{l}
$$

where $\left\{V_{i}\right\}$ is a local on frame as usual.
By the symmetries of R (speciliclly, $R_{i j k l}=R_{k l i j}$), we see that R is self adjoint, and therefore has real eigenvalues.
we say that R is non-negative, positive, quasi-positive, etc, if its eigenvalues have that property.

Theorem: Let $\left(M^{n}, g\right)$ be closed and oriented, and let $1 \leqslant k \leqslant n-1$.
If $R \geqslant 0$, then every harmonic k-form is parallel, so

$$
b_{k}(M) \leqslant\binom{ n}{k}=b_{k}\left(\pi^{n}\right) .
$$

If R is quasi-positive, then there are no nontrivial harmonic k-farms, hence

$$
b_{n}(M)=0 .
$$

Bohm-Wilking:

$$
R \geq 0 \longrightarrow\left\{\begin{array}{l}
\mathbb{S}^{n} \\
\text { symuhn- spae } \\
\text { bind- } \mathbb{\mathbb { P } ^ { n }}
\end{array}\right.
$$

using Rigi flow

Eigenvalue Estimates and Rigidity
Recall that, by some function analysis, the eigenvalues of $\Delta: C \infty(\mathrm{~m}) \rightarrow \mathbb{R}$ form an increasing sequence

$$
0=\lambda_{0}<\lambda_{1} \leqslant \lambda_{2} \leqslant \cdots \rightarrow \infty
$$

The comesponily eigentutions are, of course, smooth and dense in $L^{2}(M)$. let's focus on the eigenvalues for now though:

Theorem: (Lichnerowicz)
Let $\left(M_{1}^{n}, g\right)$ be a closed Riem. mfd. with Ric $\geqslant(n-1) C$ for some $C>0$. Tun

$$
\lambda_{1} \geqslant n c .
$$

Proof: Let $f \in C^{\infty}(M)$. Then at a point $x \in M$ at which we center a local ON nome frame $\left\{V_{i}\right\}$,

$$
\begin{aligned}
t_{r} \nabla^{2} f & =(1, \ldots, 1) \cdot\left(\nabla_{v_{1}} \nabla_{v_{1}} f, \ldots, \nabla_{v_{n}} \nabla_{v_{n}} f\right) \leq \sqrt{n}\left|\nabla^{2} f\right| \\
& \frac{1}{n}(\Delta f)^{2} \leq\left|\nabla^{2} f\right|^{2} .
\end{aligned}
$$

Let f be an eigenfunction of Δ, and apply this estimate to the Buchner Formula:

$$
\begin{aligned}
-\frac{1}{2} \Delta|\nabla f|^{2} & =-\langle\nabla \Delta f, \nabla f\rangle+\left|\nabla^{2} f\right|^{2}+\operatorname{Ric}(\nabla f, \nabla f) \\
& \geqslant-\lambda|\nabla f|^{2}+\frac{1}{n}(\Delta f)^{2}+\operatorname{Ric}(\nabla f, \nabla f) \\
& =-\lambda|\nabla f|^{2}+\frac{\lambda}{n} f \Delta f+\operatorname{Ric}(\nabla f, \nabla f)
\end{aligned}
$$

Recalling Green's Formula

$$
\int_{M} u \Delta v+\int_{M}\left\langle\nabla_{n}, \nabla v\right\rangle=\int_{\partial M} u\langle\nabla v, v\rangle \quad \forall u, v \in C^{\infty}(M)
$$

we can integite the above estimate over M (which has $D M=0$):

$$
O=-\int_{M} \Delta|\nabla f|^{2} \geqslant \int_{M}\left(-\lambda+\frac{\lambda}{n}+(n-1) C\right)|\nabla f|^{2}
$$

So the $\frac{\lambda}{n}+(n-1) C-\lambda \leqslant 0 \longrightarrow \lambda \geqslant m C$ as desired.

Theorem: (Obata) let $\left(M^{n}, g\right)$ Le a closed Riem.mfd with Pic $\geqslant(m-1) C$ for some $C>0$. If $\lambda_{1}=n C$, then
(M, g) is isometric to $\left(S^{n}\left(\frac{1}{\sqrt{c}}\right), g_{r d}\right)$

Proof: WLOG $c=1$, and $\lambda_{1}=n$.
In the proof above, we hove that

$$
\operatorname{Ric}(\nabla f, \nabla f)=(n-1) \mid \nabla f)^{2} .
$$

Recalling th t $\Delta(f)^{2}=2 f \Delta f-2|\nabla f|^{2}$, we obtain, using the Bochnir Formula Estimate above, the

$$
-\frac{1}{2} \Delta\left(|\nabla f|^{2}+f^{2}\right) \geqslant f \Delta f-n|\nabla f|^{2}+(n-1)|\nabla f|^{2}-f \Delta f+|\nabla f|^{2}=0
$$

Sine the integral of the LHS over M is O, we conclude that

$$
\Delta\left(|\nabla f|^{2}+f^{2}\right) \equiv 0
$$

Thus, $\|f\|^{2}+f^{2} \equiv \alpha$ for some constant α.
Now, normalize f so that $\|f\|_{\infty}=1$. At a max $/ \mathrm{min}$ point, $\nabla f=0$, so that we obtain $\alpha=1$, and tut $\max f=1=-\min f$.

Let $p, q \in M$ be st. $f(p)=-1, f(q)=1$. Let $\gamma:[0, a] \rightarrow M$ be a minimizing geodesic connecting p and q. If $\phi=f \circ \gamma$, then

$$
\frac{\left|\phi^{\prime}(t)\right|}{\sqrt{1-\phi()^{2}}} \leq \frac{|\nabla f(\phi(t))|}{\sqrt{1-f_{\circ \gamma}(t)^{2}}} \equiv 1
$$

so the after integration from 0 to a,

$$
\pi \leqslant a=\delta(p, q)
$$

Thur, $\operatorname{dian}\left(M_{1} g\right) \geq \pi$, but since Bonnat-Myer implies $\operatorname{diam}\left(M_{i g}\right) \leq \pi$, by rigidity we conclude.

Demark: A more direct prof ob Obate's Theorem exists (and is $L^{\text {mil }}$ beautiful).
In fact, it can be rephrased as:
Theorem (Obata, 1962) A complete Rem inf s $\left(M^{n}, g\right), n \geqslant 2$, admits a untrivial son $\phi: M \rightarrow \mathbb{R}$ of

$$
\text { Hess } \phi=-k \phi g, \quad(k>0)
$$

ff it is isometric to $\left(\delta^{n}\left(\frac{1}{\sqrt{n}}\right), g_{, j}\right)$.

Finally, one last application, this time to PDES.
Theorem: (Girding's Inequality)

$$
\begin{aligned}
& \exists c_{1}, c_{2}>0 \text { st. } \forall \omega \in \Omega^{D}(M) \\
& \quad(\Delta \omega, \omega) \geqslant c_{1}\|\omega\|_{H^{\prime}}^{2}-c_{2}\|\omega\|_{L^{2}}^{2}
\end{aligned}
$$

Proof: By WF II,

$$
\begin{aligned}
\langle\Delta \omega, \omega\rangle & =\frac{1}{2} \Delta|\omega|^{2}+|\nabla \omega|^{2}-\left\langle\sum_{j} \omega^{i n} i\left(v_{j}\right) R\left(v_{i}, v_{j}\right) \omega, \omega\right\rangle \\
& \geqslant \frac{1}{2} \Delta|\omega|^{2}+|\nabla \omega|^{2}-a_{1}|\omega|^{2}
\end{aligned}
$$

where $a_{1}=a_{1}(M, R)<\infty$ since M is compact.
Integrating our M we obtain

$$
\begin{aligned}
(\Delta \omega, \omega) & \geqslant \int_{M}|\nabla \omega|^{2}-a_{1} \int_{M}|\omega|^{2} \quad(\text { weate-coescini,ly }) \\
& =c_{1}\|\omega\|_{H^{\prime}}^{2}-c_{2}\|\omega\|_{L^{2}}^{2}
\end{aligned}
$$

